A ROADSIDE UNIT FOR INFRASTRUCTURE ASSISTED
INTERSECTION CONTROL OF AUTONOMOUS VEHICLES
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MOTIVATION

= Recent advances made to autonomous vehicle technologies and cellular network capabilities

motivate developments in vehicle-to-everything (V2X) communications.

= Crosswalks oriented along city intersections are among the most dangerous situations for

pedestrians, accounting for up to 60% of injuries caused by vehicles.
= Traffic idling at lengthy red lights contributes to vehicle emissions and noise pollution.

= Current roadside unit (RSU) deployment costs are exorbitant and are expensive to maintain.



THIS PAPER

We propose a cost-effective solution to intelligent and connected intersection control that serves as a proof-of-

concept model suitable as the basis for continued research and development.

=  To achieve this, we...

o Simulate our intersection control system in a virtual environment of our Lot H test course using GazelleSim.
o Establish a connection between the vehicles and RSU to enable vehicle speed control within the intersection.

o Evaluate a real-world representation of our RSU operating in both an emulated 4-way intersection and cross-

walk scenario.

= Validate our fuel-efficiency claims based on a reduction in acceleration and braking through the intersection.



EXISTING WORK

= Most existing research efforts on infrastructure assisted intersection control

are tested exclusively in simulation (such as SUMO).

IIIT"IIEQIIIIIIF[« .

= Obstacles such as variances in the kinematics between vehicle types, uneven
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pavement, and networking limitations can not be understood by simulation alone.

= Real-world test cases often do not address the cost efficacy of a single unit.

= Infrastructure assisted occupancy grids as a safety feature do not explore

velocity control, instead on informing human decision making.
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SYSTEM COMPONENTS

RSU

= Raspberry Pi 4 B
= |2V-5V Converter
= |2V Battery

Traffic Light

4 individual LED lights
Relays with controller
Power supply

Logic radio module/Wi-Fi
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ACTor |

Polaris Gem e2 Electric Vehicle
Dataspeed Drive-by-Wire kit
HDR Camera

2 Swift Piksi GPS modules
Laptop with ROS



SIMULATION ENVIRONMENT

GazelleSim

O For initial testing of new software features, our algorithms are
first implemented in simulation.

L We use a lightweight simulator developed at LTU: GazelleSim.

L Multiple Ackermann steering robots are simulated with turning
capabilities identical to the ACTor vehicles.

L This simulator uses a meters per pixel parameter to accurately
display the position of both vehicles on the map as they would

appear in a real-world test.




ADAPTIVE SPEED ALGORITHM

when the traffic light state changes:

calculate distance to the closest intersection # via waypoints
time to intersection = distance / current speed # kinematics equation

1if light state is red:
if time to intersection < time to change state:
set speed to distance / time to state change
else:
maintalin current speed

1f light state 1s green:
1f time to intersection > current state time + time to next state change:
set speed to distance / time to next state change
else:
maintalin current speed /



CALCULATING WAYPOINT DISTANCEWITH GEOPY

Definitions:

Let v = (¢,, \,) be the GPS coordinates of vehicle v.

Let w; = (¢, \;) be the GPS coordinates of waypoint w;.

Let W = {w;,wa,...,w,} be the set of all waypoints.

Let I C W be the set of all intersections. ‘
The distance between points of a sphere h(¢1, A1, P2, A2) =

27 - arcsin (\/Sin2 (%) + cos(¢1) cos(¢ho) sin® (%))

Find the waypoint w; with the shortest distance to v:

[2]

Let p = min h
et p = min h(z, v)

Sum h(w;,w;+1) from p to the next intersection:
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Tested on 2 real-world scenarios: crosswalks and intersections against L% Lefigth! 69.27m ™ : Length: 7%7m

3 different light timing configurations. ~

Data collection for each evaluation begins at the initial green light
encountered by the ACTor, which is enabled to drive the first frame
that a green light is registered.

For each experiment, we also include a human driver to serve as a
control. The driver is instructed to maintain a speed of 5 mph (2.24
m/s) and receives a verbal 5-second warning of state changes to
emulate real-world yellow lights.




RESULTS — ACCELERATION REDUCTION THROUGH
THE INTERSECTION s a(human)|dt — [{=2° |a(adaptive)|dt
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RESULTS —VEHICLE SPEED ANALYSIS
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RESULTS — COST EFFECTIVENESS AND SCALABILITY

= As the required RSU density for connected vehicles scales with traffic density, analyzing the cost efficacy of each
unit has become a valuable benchmark in this field.

= Cost of ownership must consider factors such as coverage, location-dependent installation costs, energy
consumption, and hardware expenses.

= The real estimated deployment costs for an RSU can range from $7,000 to $15,000, with a more comparable cost
exclusive to hardware being $6300.

= By utilizing simplified communication protocols and limiting coverage requirements, our proposed RSU can be
deployed in a teaching environment for $200.

"  We anticipate compute limitations as the number of vehicles managed by the same RSU surpasses 10 and
emphasize that our model is intended as a teaching tool, rather than serving as a deployable solution.



SUMMARY AND FUTURE IMPROVEMENTS

= Developed a cost-effective V2X teaching model for adaptive intersection control with a roadside unit for under

$200, significantly reducing costs compared to deployable units.

= |mplemented an intersection speed control algorithm on the RSU to reduce acceleration and braking by up to

75%, leading to improved fuel efficiency in gas vehicles and reduced noise pollution caused by red light idling.
= |n the future, we will consider...
o Developing a fail-operational system to better handle connection loss without requiring human intervention.

o Integrating crosswalk timer data for early pedestrian detection to improve the safety within our pipeline.
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