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Abstract. 

Alzheimer’s disease (AD), defined by the accumulation of amyloid plaques and tau 

tangles in the brain can be diagnosed with biomarkers obtained from PET scans or CSF 

proteomics. However, such methods are expensive and invasive, leading to most AD diagnoses 

being made based on cognitive tests and evidence of atrophy in the medial temporal lobe 

structures, such as the hippocampus and amygdala. Machine and deep learning architectures such 

as convolutional neural networks (CNNs) have seen great success in diagnosing AD from 

magnetic resonance imaging (MRI). Moreover, current studies have begun to outperform 

methods typically used in practice for classifying hard to detect subgroups (atypical AD). 

However, the input scans for such models rely heavily on pre-processing, and the accurate 

detection of AD is reliant on the signal-to-noise ratio (SNR), a result of instrument-related 

parameters such as magnetic field strength. In this project, we first build a dataset suitable for 

AD binary classification and implement contemporary pre-processing methods found in the 

literature. Next, we introduce additive noise to the pre-processed images sampled from the 

distribution MRI is most vulnerable to during acquisition time. Finally, we apply non-local 

means filtering to denoise the MR images and plot the residual distribution of the noise. Our 

denoising algorithm achieves a SNR percent increase of up to 39.8%, and we show 

experimentally that the Rician distribution is approximately Gaussian for high SNR. 
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Introduction. 

 Alzheimer’s disease (AD) is a progressive neurodegenerative condition and the most 

common cause of dementia in older adults. The diagnosis of AD is generally based on history-

taking and memory tests given in clinics, rather than with the use of biomarkers taken from PET 

scans or lumbar puncture. This can make it difficult to obtain an objective diagnosis, causing 

specialists working in memory clinics to have lowered levels of diagnostic agreement [1]. 

However, the application of deep learning to automated classification of AD has recently gained 

considerable attention, following progress in neuroimaging acquisition [2]. Deep learning 

architectures such as convolutional neural networks (CNNs) rely heavily on the pre-processing 

of the input scans and are sensitive to noise [3]. Thus, a great deal of effort has gone into 

developing a common standard for pre-processing MR images for computer vision tasks, such as 

fMRIPrep [4]. In this project, we build a dataset of 257 AD and 293 cognitively normal (CN) 

patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and apply standardized 

pre-processing techniques suitable for AD classification. We apply intensity non-uniformity 

(INU) correction, skull-stripping, spatial normalization, and brain tissue segmentation with the 

fMRIPrep pipeline [4]. Next, we introduce additive noise sampled from the Rician distribution to 

the magnitude MR image and calculate SNR. A non-local (NL) means filter is then applied to the 

corrupted scans to denoise the images. Though the noise distribution is known, we plot the 

residuals of the restored scans as a denoising metric and to interpret the effects of increasing the 

standard deviation of the sampled noise. 

Technical Discussion. 

Data. 

 Data used in this project is limited to T1 weighted deidentified MRI scans obtained from 

the ADNI data set [5]. We collected 257 patients diagnosed with AD and 293 CN patients. AD 

patients must have evidence of AD pathology based on PET scan, CSF analysis, or autopsy 

neuropathology results. CN patients were filtered using the diagnosis labels assigned to patients 

at the initial screening visit. The raw dicom files from ADNI were first converted to nifti using 

the dicm2nii [6] tool in MATLAB. Next, each patient was converted into the BIDS [7] format 

and pre-processed with fMRIPrep.  
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Data Pre-processing. 

 In this section, we outline the data pre-processing steps performed as part of the 

fMRIPrep pipeline. Signal intensity measured from homogeneous tissue is rarely uniform and 

varies across the image. This nonuniformity is usually attributed to “poor radio frequency (RF) 

coil uniformity, gradient-driven eddy currents, and patient anatomy both inside and outside the 

field of view” [8]. To correct this issue, the intensity histogram of the image is repeatedly 

sharpened by deconvolving by a Gaussian (assumed Gaussian can model bias), then smoothed 

with a B-spline [9]. This is referred to as intensity non-uniformity correction and is the first 

process applied to the scans. 

 Next, skull-stripping is implemented to eliminate non-brain tissues from the MR images 

using template-based registration to OASIS [10]. This is an essential step before performing 

normalization to the spatial template images and is required for de-identification of subjects [11]. 

Then, registration to a common reference space is performed to establish a one-to-one 

correspondence between the brains of different individuals [12]. Lastly, brain tissue segmentation 

is performed to segment the 3D image into different tissue types (Grey/White matter, CSF) [13]. 

We use this output as the reference image for modeling the noise and calculating SNR in a later 

section. This pipeline was run on all 550 patients with 8 GPU cores in parallel batch jobs 

submitted through slurm on the Wahab shared computing cluster at Old Dominion University. 

 Additive Rician Noise. 

 Rician noise is the most common form of noise in MR magnitude images [14] and is 

created by taking the magnitude of a bivariate normal distribution: 

√(𝑠𝑖𝑔𝑛𝑎𝑙ℝ + 𝑛𝑜𝑖𝑠𝑒𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛)2 + (𝑠𝑖𝑔𝑛𝑎𝑙𝑖 + 𝑛𝑜𝑖𝑠𝑒𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛)2 ∶ 𝜇 = 0; 𝜎ℝ = 𝜎𝑖 (1)  

The Rician distribution of a noisy MRI magnitude image has the following PDF: 

𝑝𝑀(𝑀) =
𝑀

𝜎2
𝑒𝑥𝑝 ( − (

𝑀2 + 𝐴2

2𝜎2
))𝐼0 (

𝐴 ∗ 𝑀

𝜎2
) (2) 

Where M is the measured pixel intensity, A is the image pixel intensity without noise, and 𝐼0 is 

the modified zeroth order Bessel function [5, 15]. This type of noise is inherent to MR images 

due to the signal at acquisition time being measured through a quadrature detector, reading in 



3 
 

both real and imaginary signals in k-space (Fourier space) [14]. We assume the noise in both 

signals is Gaussian with zero mean and the distributions are uncorrelated, due to the complex 

Fourier transform applied to the k-space being linear and orthogonal preserving the Gaussian 

characteristics [8]. Magnitude images are created by calculating the magnitude pixel by pixel 

from the real and imaginary images [8]. This nonlinear mapping to create the magnitude image 

causes the noise distribution to no longer be Gaussian. This is called Rician noise [8]. 

 Non-local Means Denoising. 

 Unlike local meaning filters, non-local (NL) mean filtering takes the mean of all pixels in 

the image, taking advantage of the natural redundancy of information in images [16]. The central 

idea of using NL means filtering is that similar pixels are not guaranteed to be close in space 

[17]. Therefore, it is better to search a large portion of the image for pixels resembling the one 

we want to denoise [17]. The restored intensity 𝑁𝐿(𝑣)(𝑖) of the voxel 𝑖 is a weighted average of 

all voxel intensities in the image 𝐼: 

 𝑁𝐿(𝑣)(𝑖) = ∑ 𝑤(𝑖, 𝑗)𝑣(𝑗)
𝑗∈𝐼

(3) 

Where 𝑣 is the intensity function and 𝑤(𝑖, 𝑗) is the weight assigned to 𝑣(𝑗) in the restoration of 

voxel 𝑖 [16]. This follows from the impact of averaging M signals on the SNR: 

𝑝̅(𝑥, 𝑦) =
𝑀2𝑠2(𝑥, 𝑦)

𝑀𝐸{𝑁2(𝑥, 𝑦)}
 (4) 

Where the signal increases with the square of 𝑀, and noise linearly. 

Discussion of Results. 

Figure [N1] shows the reference image of a T1 weighted MR image in the axial plane 

after pre-processing with fMRIPrep. This output image is assumed to have no or minimal noise 

and an infinite SNR, instead of estimating the true SNR which is out of scope for this project. 

Figures [N2-N5] are the result of applying equation (1) to the reference magnitude MR image, 

creating a noisy magnitude MR image with the PDF defined in equation (2). Table [T1] displays 

the SNR of each non-zero 𝜎, which defines the standard deviation of both Gaussian distributions 

sampled from in equation (1). In effect, this parameter allows to adjust the level of additive 
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Rician noise in the corrupted images [N2-N5]. As 𝜎 increases, the amount of noise in the 

degraded image increase, and the SNR decreases. 

Next, we apply NL means filtering from equation (3) to denoise the corrupted images. 

Figure [D1] is identical to the reference magnitude MR image [N1] since 𝜎 = 0. Figures [D2-

D5] are the restored images after applying NL means filtering. Due to the level of redundant 

information in the reference scan, the results of this denoising algorithm are very impressive. 

This filtering technique takes advantage of the properties of image averaging defined in equation 

(4), where similar pixels are averaged if their neighboring pixels have a low mean square error 

defined by a patch size parameter. Since MR images have similar pixels within a defined patch 

size, high averaging of the signals results in impressive performance. Table [T1] contains the 

SNR of the corrupted and restored images, with percent increase that rises with the noise. 

Lastly, we plot the residual of the error between the reference image [N1] against each 

restored image [D2-D5]. Figure [R1] is the residual error of the entire image, even the areas of 

no signal. It is standard practice to only include the regions of brain tissue to accurately measure 

performance of the denoising filter, shown in figure [R2]. The peaks around 0 in figure [R1] 

indicate strong performance from the filter, as many regions have no error between the reference 

and denoised images. However, the larger peaks evident in this figure highlight the error in the 

regions of no signal, representing air during MRI acquisition. Therefore, measuring the residual 

of an area with no signal becomes ineffectual. Instead, figure [R2] plots the residual in only the 

regions with signal (brain tissue) and models the noise distribution much closer. Residuals with 

high SNR approximate the Gaussian distribution, while noise from the lower SNR images appear 

more Rician, as expected from [4]. Residuals of high performing denoising filters should follow 

a reduced form of the target distribution, evident in figure [R2]. While the true distribution of 

noise was known in this case, this tool can reveal properties of the noise if unknown. 

Summary. 

 In this project, we built a dataset suitable for future deep learning based AD classification 

and implemented common pre-processing methods to create reference magnitude MR images. 

Then, we degraded the reference images with additive Rician noise created from the magnitude 

of a circularly symmetric bivariate normal random variable, commonly introduced as Gaussian 
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noise in the real and imaginary signals during MRI acquisition. Finally, we apply non-local 

means filtering to denoise the MR images and plot the residual error. 

Results. 

 

[N1]         [N2]          [N3] 

 

[N4]         [N5] 
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[D1]        [D2]                 [D3] 

 

[D4]          [D5] 

Table [T1] 𝝈 = 𝟑𝟎 𝝈 = 𝟓𝟎 𝝈 = 𝟏𝟎𝟎 𝝈 = 𝟏𝟓𝟎 

Noisy SNR 27.2 dB 22.8 dB 16.8 dB 13.3 dB 

Denoised SNR 29.1 dB 26.1 dB 22.6 dB 19.9 dB 

% Increase 6.7% 13.5% 29.4% 39.8% 
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[R1] 

 

[R2] 
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