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Abstract—Alzheimer’s disease (AD), defined as an abnormal
buildup of amyloid plaques and tau tangles in the brain can be
diagnosed with high accuracy based on protein biomarkers via
PET or CSF analysis. However, due to the invasive nature of
biomarker collection, most AD diagnoses are made in memory
clinics using cognitive tests and evaluation of hippocampal atro-
phy based on MRI. While clinical assessment and hippocampal
volume show high diagnostic accuracy for amnestic or typical
AD (tAD), a substantial subgroup of AD patients with atypical
presentation (atAD) are routinely misdiagnosed. To improve
diagnosis of atAD patients, we propose a machine learning
approach to distinguish between atAD and non-AD cognitive
impairment using clinical testing battery and MRI data collected
as standard-of-care. We develop and evaluate our approach
using 1410 subjects across four groups (273 tAD, 184 atAD,
235 non-AD, and 685 cognitively normal) collected from one
private data set and two public data sets from the National
Alzheimer’s Coordinating Center (NACC) and the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). We perform multiple
atAD vs. non-AD classification experiments using clinical features
and hippocampal volume as well as a comprehensive set of MRI
features from across the brain. The best performance is achieved
by incorporating additional important MRI features, which
outperforms using hippocampal volume alone. Furthermore, we
use the Boruta statistical approach to identify and visualize signif-
icant brain regions distinguishing between diagnostic groups. Our
ML approach improves the percentage of correctly diagnosed
atAD cases (the recall) from 52% to 69% for NACC and from
34% to 77% for ADNI, while achieving high precision. The
proposed approach has important implications for improving
diagnostic accuracy for non-amnestic atAD in clinical settings
using only clinical testing battery and MRI.
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I. INTRODUCTION

ALZHEIMER’S disease (AD) is a progressive, neurode-
generative condition associated with abnormal buildup

1 Vision Lab, Department of Electrical and Computer Engineering, Old
Dominion University, Norfolk, VA, USA 23529

2 Glennan Center for Geriatrics and Gerontology, Department of Medicine,
Macon & Joan Brock Virginia Health Sciences at Old Dominion University,
Norfolk, VA, USA 23529

* Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed
to the design and implementation of ADNI and/or provided data but
did not participate in the analysis or writing of this report. A complete
listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf

Correspondence to: Khan M. Iftekharuddin, kiftekha@odu.edu, 2131K
Engineering Systems Building, Norfolk, VA, USA 23529

of amyloid plaques and tau tangles in the brain, leading
to brain atrophy and cognitive decline. While typical AD
(tAD) presents with episodic memory loss and hippocampal
atrophy, a substantial subgroup (at least 25%) of all AD
cases present without memory deficits, especially in the early
stages of the disease [1]–[3]. Rather, these non-amnestic,
atypical AD (atAD) patients present with deficits in other
cognitive domains, such as language, visuospatial, behavioral,
or motor functioning and are associated with relative sparing
of the hippocampus [1]–[3]. Since AD is usually diagnosed
based on MRI-derived hippocampal volume and a battery of
cognitive tests that assess memory, many of these patients
experience delays in diagnosis and may be misdiagnosed
with other dementias or neurological conditions causing non-
AD cognitive impairment (non-AD). Diagnostic confirmation
requires more comprehensive testing such as lumbar puncture
to obtain a CSF sample for protein analysis or PET scan
with radiotracers that bind to amyloid and tau aggregates
in the brain [2]. While effective, these procedures are more
expensive, invasive, and carry higher risk (e.g., radiation
exposure during nuclear imaging) [2]. Therefore, there is a
need for methods that increase atAD diagnostic accuracy using
clinical measurements collected as standard-of-care.

While tAD is primarily associated with hippocampal atro-
phy, atAD has multiple variants, each associated with different
patterns of neurodegeneration. Behavioral or frontal variant of
atAD is associated with frontal and anterior temporal regions,
and may present with symptoms like those of the behavioral
variant of frontotemporal dementia, leading to misdiagnosis
[3]. The language variant, also known as logopenic progressive
aphasia due to AD, is associated with greater rates of atrophy
in the left compared to the right hemisphere of the brain,
beginning with the temporoparietal junction, posterior cingu-
late, and precuneus and progressing into temporal, frontal,
and caudate regions [1], [2]. Patients with the visuospatial
variant of atAD may meet diagnostic criteria for posterior
cortical atrophy, a neurodegenerative condition associated with
difficulties in vision, spatial processing, and perception [3].
While AD is the primary cause of posterior cortical atrophy,
other causes may include dementia with Lewy bodies, prion
disease, and corticobasal degeneration [3]. MRIs of patients
with the visuospatial variant show atrophy in posterior parietal
and occipital regions, with initial sparing of the hippocampus
and other areas within the medial temporal lobe [3]. The motor
variant of atAD, associated with temporoparietal, posterior
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cingulate, basal ganglia, thalamus, insula, and occipital lobe
atrophy, may manifest as corticobasal syndrome, with clinical
features such as Parkinsonism, dystonia, limb apraxia, and
others [3]. The diffuse selection of brain regions involved in
atAD variants suggests that MRI features from brain regions
in addition to the hippocampus may provide additional and
complementary information to inform diagnosis of atAD.

Machine learning (ML) and pattern-recognition techniques
have found wide application in neuroimaging for discovery
of previously unknown patterns in imaging data. In recent
years, several studies have applied ML for early detection
and classification of AD. Imaging data have been used with
ML to detect early onset AD [4]. For example, in Yue et
al., [5] brain feature maps are input into a deep ML model
to learn hidden features, achieving F1 scores of over 98%
during a binary classification task on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI)-2 dataset. ML models trained
on medical imaging data can be used to diagnose AD during
early stages of cognitive impairment and help identify which
brain regions play a significant role in disease progression. In
a study by Fujita et al., [6] ML models are trained for AD
vs. non-AD classification using cognitive test scores, patient
educational level, and z-scores quantifying the atrophy of the
medial temporal area of the brain, including the hippocampus,
amygdala, and entorhinal cortex.

However, there has been limited work to improve diagnosis
of difficult to diagnose atAD cases. Our previous work [7]
demonstrates that ML can classify tAD vs. non-AD, atAD
vs. non-AD, and combined tAD+atAD vs. non-AD using
clinical features and hippocampal volumes collected from 173
patients from a single tertiary memory center site. In this
manuscript, we build upon these preliminary results to develop
and evaluate a more comprehensive ML-based diagnostic
pipeline using a larger cohort of subjects from public sources,
including ADNI and the National Alzheimer’s Coordinating
Committee (NACC) Uniform Data Set, as well as a data set
of memory clinic patients. Specific contributions of this work
are as follows:

• Identify non-amnestic atAD cases with MRI scans within
different public data sets (NACC and ADNI) based on
logical memory scores and build a dataset. From the
MRI scans, we extract volumes, cortical thicknesses, and
surface areas from 34 regions of interest per hemisphere
of the brain.

• Develop Random Forest models to classify between atAD
and non-AD cases using features currently used in clinical
practice including cognitive test scores and hippocampal
volume.

• Study the contributions of clinical and MRI features from
across the whole brain using an ablation study.

• Identify and visualize significant brain regions for dis-
tinguishing between diagnostic groups to further charac-
terize tAD, atAD, and non-AD groups and highlight the
most important features for atAD diagnosis.

II. MATERIALS AND METHODS

A. Data

Data used in the preparation of this study are obtained from
three data sets. A private set with de-identified data is obtained
from the Glennan Center for Geriatrics and Gerontology at
Brock Virginia Health Science (VHS), Old Dominion Univer-
sity. This study has been reviewed and approved by the VHS
IRB under IRB #18-08-WC-0215. Data are also obtained from
two public data sets, the NACC Uniform Data Set Version 3
[8], [9] and ADNI database [10], [11]. These three data sets
are described in further detail below.

1) VHS data set: The VHS data set consists of de-identified
data from 177 patients aged 65-90 who are evaluated at
the VHS Glennan Center Memory Center. All patients had
baseline visits from January 1, 2015 through September 2024.
Diagnostic work up for each participant includes a 120-
minute standardized baseline assessment by interviewing and
examining the patients, administration of a 90-minute battery
of neuropsychological tests that assess all major cognitive
domains, and interview of a proxy close to the patient.
Clinical diagnosis is made by a cognitive disorder specialist.
Patients also undergo MRI imaging of the brain and volumetric
analysis of the hippocampus by commercially available fully-
automated software NeuroQuant®. Diagnosis of probable AD
at the stages 3-6 (MCI or dementia with differing severity) is
made based on clinical, MRI, PET, and CSF data, based on
the National Institute on Aging and Alzheimer’s Association
core clinical criteria [12], [13].

2) NACC data set: The NACC Uniform Data Set [9]
includes participants from the National Institute on Aging’s
Alzheimer’s Disease Research Centers Program since 2005.
The data includes 18 data collection forms completed by clin-
icians on family history, risk factors, and neurophysiological
battery. The NACC data set includes subjects with AD, other
diagnoses causing cognitive impairment, and healthy subjects.
MRI scans and biomarker testing results are available for
a subset of the patients. For more information, please visit
NACC’s website [8].

3) ADNI data set: ADNI [11], launched in 2003, is a
public-private partnership with the original goal of testing
whether serial MRI, PET, other biological markers, and clin-
ical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI)
and early AD. Current goals include validating biomarkers
for clinical trials, improving the generalizability of ADNI
data by increasing diversity in the participant cohort, and
providing data concerning the diagnosis and progression of
AD to the scientific community. For up-to-date information,
see adni.loni.usc.edu.

B. Data selection criteria

We organize subjects into four groups: tAD, atAD, non-
AD cognitive impairment (non-AD), and cognitively normal
(CN). Inclusion/exclusion criteria for each group of patients
are described in the sections below. The distribution of patients
in each group for each data set is shown in Table I.
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TABLE I
NUMBER OF SAMPLES IN EACH DATA SET BY GROUP.

Data Set tAD atAD non-AD CN Total

NACC (Public) 92 29 59 264 444
ADNI (Public) 144 87 137 421 789

Public Total 203 116 196 685 1233
VHS (Private) 70 68 69 0 177

Combined Total 273 184 235 685 1410

The NACC and ADNI data sets report the initial clinician
diagnosis prior to biomarker testing. Diagnosis has been
confirmed for all patients based on protein biomarkers from
PET, CSF, or autopsy. Table II reports the percentage of
patients with correct initial clinician diagnosis (as reported in
the NACC or ADNI databases) at baseline for the tAD and
atAD groups. This percentage corresponds to the recall:

Recall =
TP

TP + FN
(1)

where TP is the number of ‘true positives’, i.e., patients
with biomarker evidence of AD pathology that received an
initial clinician diagnosis of AD, and FN is the number of
‘false negatives’, i.e., patients with biomarker evidence of
AD pathology that received an initial clinician diagnosis of
nonAD.

1) tAD and atAD: Subjects in the tAD and atAD groups
must have no reported traumatic brain injury and must have
evidence of AD pathology based on PET scan, CSF analysis,
or autopsy neuropathology results [14]–[26]. For the VHS data
set, subjects undergo either PET scan or CSF analysis. PET
scans are visually read by experts, which has been shown to be
comparable to quantitative readings [14]–[16]. CSF analysis is
conducted using the Mayo clinic ADEVL test and associated
cutoffs [17].

For the ADNI and NACC data sets, subjects that have
undergone amyloid and tau PET scans for AD diagnosis must
be amyloid beta positive based on SUVR ≥ 1.48 (centiloid 22)
and tau positive based on temporal lobe SUVR ≥ 1.29 [18]–
[22]. Subjects that have undergone lumbar puncture and CSF
analysis for AD diagnosis must have protein concentrations
of amyloid beta 42 below 700 pg/ml, total tau above 400
pg/ml, and phosphorated tau above 60 pg/ml [23]. Subjects
that have neuropathology results based on autopsy must have
a Consortium to Establish a Registry for Alzheimer’s Disease
(CERAD) score of 2 or 3 (moderate or frequent neural
plaques) and Braak stage for neurofibrillary degeneration ≥
3 [24].

For the VHS data set, patients have been divided into tAD
and atAD groups based on their amnestic or non-amnestic pre-
sentation, respectively, during clinical assessment. For NACC
and ADNI data sets, subjects with AD are further divided
into tAD (amnestic) and atAD (non-amnestic) subgroups based
on their logical memory (LM) scores from Wechsler Memory
Scale-Revised test [25]. Non-amnestic cases have a higher LM
score than education thresholds [26] defined for each group as
follows.

2) tAD: Subjects with 16 or more years of education and
LM Score < 9, 8-15 years of education and LM Score < 5,
or 0-7 years of education and LM Score < 3 are included in
the tAD group.

3) atAD: Subjects with 16 or more years of education and
LM Score ≥ 9, 8-15 years of education and LM Score ≥ 5,
or 0-7 years of education and LM Score ≥ 3 are included in
the atAD group.

4) non-AD: Subjects in the non-AD group must have no
reported traumatic brain injury and have received a diagnosis
of cognitive impairment. Excluding traumatic brain injury,
there are no limitations on the presumptive etiology of the cog-
nitive impairment, with examples including vascular dementia,
frontotemporal dementia, corticobasal degeneration, dementia
with Lewy bodies, Parkinson’s disease dementia, prion dis-
ease, alcohol-related dementia, HIV, and others. Patients must
have tested negative for amyloid beta and/or tau pathology
based on PET scan, CSF analysis, or autopsy.

5) CN: Subjects in this group must have no reported trau-
matic brain injury and no diagnosis of cognitive impairment.
Patients must have tested negative for amyloid beta and/or tau
pathology based on PET scan, CSF analysis, or autopsy.

C. Clinical features and battery of cognitive tests

Clinical features used in our analysis include the subject
age, years of education, and whether the subject has a family
history of dementia. In addition, we include the total score and
sub-scores of five different cognitive tests commonly used in
the diagnosis of AD. These cognitive tests are described in the
sections below.

1) Montreal Cognitive Assessment (MoCA): The Montreal
Cognitive Assessment (MoCA) is a rapid, 30-point screening
instrument used to detect early dementia and mild cognitive
impairment. The assessment includes both verbal and written
components and evaluates participants on the following sub-
scores: Visuospatial Executive, Naming, Attention, Language,
Abstraction, Memory, and Orientation. The MoCA has demon-
strated strong positive and negative predictive values for both
Alzheimer’s disease and MCI.

2) Mini-Mental State Examination (MMSE): The Mini-
Mental State Examination (MMSE) is a short screening tool
to assess an overall measure of cognitive impairment. It is a
set of 11 questions, scored out of 30, and evaluates orientation
to time, orientation to place, and drawing.

3) Trail Making Test (TMT) A & B: The Trail Making Test
(TMT) is a timed, two-part assessment designed to evaluate
rote memory and executive functioning. Test A requires the
patient to connect a sequence of numbered circles in order
as quickly as possible using a pencil. In test B, the patient is
required to connect numerical and alphabetical circles together
in order, alternating between the two. A score is considered
deficient if it takes 78 seconds or more to complete test A,
or 273 seconds or more for test B. The examiner will correct
mistakes made by the patient, which are included in the total
time score.

4) Animal fluency: The animal fluency test [27] is a simple,
timed neuropsychological measurement test in which partic-
ipants are given 60 seconds to name as many animals as
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TABLE II
INITIAL CLINICIAN DIAGNOSIS FOR BIOMARKER-CONFIRMED AD CASES BY DATA SET (NACC OR ADNI) AND SUBTYPE (TAD OR ATAD).

Data Set Diagnostic Subgroup Initial Clinician Diagnosis Total # AD % Correctly Diagnosed

AD non-AD (Confirmed via biomarker testing) (Recall × 100)

NACC tAD 84 8 92 91.30%
atAD 15 14 29 51.72%

ADNI tAD 134 10 144 93.06%
atAD 30 57 87 34.48%

possible. Patients unable to name 15 or more animals within
the given time frame may be at risk for having early stages
of dementia or amnestic mild cognitive impairment (aMCI)
[28]. Individuals with aMCI have been shown to perform
significantly worse on the animal fluency test than cognitively
normal patients [28].

5) Boston Naming Test (BNT): The Boston Naming Test
(BNT) [29] is a brief quantitative measurement of confronta-
tion naming ability. The examinee is asked to name 60
drawings of objects that decrease in familiarity as the test
progresses. Conditions such as cerebrovascular accidents and
subcortical diseases can contribute to poor performance on the
BNT. The BNT is included in AD testing batteries as it can
quickly identify aphasia resulting from dementia.

D. MRI feature extraction
Grey matter volume, cortical surface area, and cortical thick-

ness of individually segmented brain structures are obtained
using a FreeSurfer (FS) v.7.4 data processing pipeline. FS is an
open-source segmentation tool that we use to label each voxel
as one of 34 regions of interest per hemisphere according to the
Desikan-Killiany atlas. Left and right hemisphere values were
extracted independently and summed to obtain selected total
brain volumes, including estimated total intracranial volume
(eTIV). T1-weighted magnetic resonance images from the
sagittal acquisition plane are used for the cortical reconstruc-
tion and subcortical segmentation processes. Series with the
latest scan date are selected for patients with multiple scans
fitting our criteria.

The Digital Imaging and Communications in Medicine
(DICOM) files for each patient are converted into a single
Neuroimaging Informatics Technology Initiative (NifTI) file
format, and then into a mgz format through the mri convert
FS command to store high-resolution structural data. Next, the
recon-all automatic cortical reconstruction procedure is per-
formed in parallel on each hemisphere on a high-performance
computing cluster to reconstruct the three-dimensional volume
into a two-dimensional cortical surface. Lastly, the numer-
ical data is extracted following the segmentation process
and rounded to 3 decimal places for the following regions:
cerebrum total cranial volume, total grey matter volume, total
hippocampus volume, white matter hyperintensity volume, and
total hippocampus volume.

E. MRI feature preprocessing
For each MRI feature (volume, cortical thickness, or surface

area), we linearly regress out the effects of age, sex, and total

intracranial volume (TIV). Using healthy CN subject data, we
fit generalized linear models (GLMs) to predict each MRI
feature based on age, sex, and TIV. The GLM equation is
as follows:

MRI feature = α+age ·βage+sex ·βsex+TIV ·βTIV+ϵ, (2)

where α is the intercept; βage, βsex, and βTIV are the coefficients
for age, sex, and TIV, respectively; and ϵ represents the errors.
We use the fitted GLMs to predict the expected value of each
MRI feature for each subject as follows:

MRI featurepredicted = α̂+age·β̂age+sex·β̂sex+TIV·β̂TIV, (3)

where α̂ is the estimated intercept and β̂age, β̂sex, and β̂TIV are
the estimated coefficients for age, sex, and TIV, respectively.
Then, we compute the z-score as the difference of the observed
and predicted feature values divided by the standard deviation
(SD) of the CN residuals:

z-score =
MRI featurepredicted −MRI featureobserved

SD of CN residuals
. (4)

We implement our GLMs in Python using the statsmodels
library [30].

F. Machine learning for diagnostic prediction

Our goal is to improve atAD diagnostic prediction, i.e.,
atAD vs. non-AD classification, using ML. Our features in-
clude cognitive test scores and MRI-derived volumes, cortical
thicknesses, and surface areas of brain regions in the Desikan-
Killiany atlas. We select the Random Forest algorithm as
it provides multiple advantages towards building our ML
classification approach. First, Random Forest is robust to
multicollinearity and suitable for handling the expected feature
dependence among cognitive tests measuring the same or
similar constructs and among related brain regions. Second,
Random Forest does not assume any particular underlying
distribution of the data. This flexibility in handling various data
distributions is appropriate for our atAD group, which may be
composed of multiple different variants, and non-AD group,
which may be composed of multiple different diagnoses. We
use the Scikit-learn [31] implementation of the Random Forest
algorithm. During hyperparameter tuning, a grid search is
performed to select the maximum tree depth (1, 2, 3, 4, or
5 levels) and number of trees in the ensemble (two, five, ten,
100, or 1000 trees) to optimize the validation performance.
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We perform two types of ML experiments. First, we assess
how well ML performs in atAD vs. non-AD classification
using only features currently used in clinical practice (family
history, cognitive test scores, and hippocampal volume). We
perform classification experiments using each data set indi-
vidually (VHS, NACC, ADNI), the combination of the two
public data sets (NACC and ADNI), and all three data sets
combined.

Second, to study the utility of different types of features
(e.g., clinical test scores, hippocampal volume, and compre-
hensive selection of MRI features), we perform an ablation
study. Since we do not have access to the full set of MRI
features for the VHS data set, we perform the ablation study
using the two public data sets (NACC and ADNI).

For all experiments, we perform a 5x2 nested cross valida-
tion. The outer 5-folds are split into a training set (4 folds)
and a test set (1 fold). The process is repeated five times
such that each fold serves as the test set once. In the inner
2-fold cross validation loop, each training set is split into two
inner folds (training and validation) that are used to tune the
model hyperparameters. The best performing hyperparameters
are used to train the model on the combined training set and
the trained model is evaluated on the held-out test set. This
5x2 nested cross validation ensures that all samples are used
in evaluation exactly once while preventing data leakage that
may result in inflated assessments of the model performance.
We report precision, recall, and F1 score (the harmonic mean
of precision and recall) in atAD vs. non-AD classification for
all experiments.

G. Identification of significant brain regions

To characterize our atAD subjects in comparison to tAD,
non-AD, and CN groups, we study the importance of our MRI
features from different brain regions in distinguishing among
these groups using the Boruta statistical method [32]. Boruta
is a non-parametric approach based on Random Forest for
selecting all relevant features given a specified Type I error
rate. The Boruta approach does not require any assumptions
of normality or independence and works well even given
correlated features, as it was originally developed for genetics
research [32]. Using Boruta, we identify all significant brain
regions distinguishing between atAD vs. CN, tAD vs. CN, and
non-AD vs. CN to characterize each group in comparison to
the healthy population. Then, we identify significant regions
for distinguishing between atAD and non-AD. To perform our
analysis, we use the BorutaPy [33] implementation of the
Boruta algorithm with the following settings: n estimators=
‘auto’, alpha = 0.05, perc = 100, max iter = 1000, two step
= False. We limit the maximum tree depth to five to mitigate
overfitting and weight each class based on its frequency in the
training set to address class imbalance.

H. Visualization of significant brain regions

An anatomically average T1-weighted brain image from the
ICBM 152 template is used as the background for mapping
our regions of interest (ROIs) defined by the Desikan-Killiany
volumetric atlas. To visualize specific regions, we construct

an ROI mask by initializing each voxel to 0 and selectively
assigning a value of 1 or 2 to color the voxels corresponding
to each ROI. Brain regions found to be statistically significant
(α = 0.05) in distinguishing between the two patient groups
are used as the ROIs. The group mean z-score of each feature
determines the color of its corresponding voxels: blue indicates
a lower feature score relative to the comparison group, while
red indicates a higher score. The resulting mask is overlaid on
the background image to emphasize these regions using the
nilearn Python library.

III. RESULTS

A. Subject data distributions

Fig. 1A-D plot the distributions of subject ages, normalized
hippocampal volumes (z-scores), MoCA total scores, and
MMSE total scores for the tAD, atAD, nonAD, and CN
groups. Note that there is no CN group for the VHS data set.
Across all data sets, the mean normalized hippocampal volume
(Fig. 1B) for atAD is larger than tAD which is consistent with
a non-amnestic (hippocampus-sparing) presentation. For VHS
and ADNI data sets, the atAD group scores higher than tAD
on average on the MoCA (Fig. 1C) and MMSE (Fig. 1D), as
expected with a non-amnestic presentation. For NACC, atAD
scores higher than tAD on average for MMSE and the groups
are more closely aligned on MoCA score distributions.

Fig. 1. Distribution of (A) subject ages, (B) z-score of hippocampal volume,
(C) MoCA total scores, and (D) MMSE total scores for tAD, atAD, non-AD,
and CN groups within the VHS (first column), NACC (second column), and
ADNI (third column) data sets. Note that the VHS data set does not have a
CN group.
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TABLE III
FIVE-FOLD CROSS-VALIDATION CLASSIFICATION RESULTS FOR ATAD VS. NON-AD CONSIDERING DIFFERENT FEATURE SETS.

Data Set NACC ADNI

Features Precision Recall F1 Score Precision Recall F1 Score

Hippocampal volume only 0.33 0.21 0.26 0.60 0.70 0.65
Clinical only 0.73 0.66 0.69 0.87 0.77 0.82
Hippocampal volume + clinical 0.68 0.59 0.63 0.86 0.77 0.81
MRI only 0.71 0.69 0.70 0.73 0.64 0.68
MRI + clinical 0.77 0.69 0.73 0.89 0.77 0.83

TABLE IV
FIVE-FOLD CROSS-VALIDATION CLASSIFICATION RESULTS FOR
ATAD VS. NON-AD BASED ON FEATURES CURRENTLY USED IN

PRACTICE (CLINICAL SCORES + HIPPOCAMPAL VOLUME).

Data Set Precision Recall F1 Score

VHS 0.62 0.82 0.71
NACC 0.68 0.59 0.63
ADNI 0.86 0.77 0.81

Public only (NACC + ADNI) 0.84 0.71 0.77
Combined 0.72 0.61 0.66

B. Machine learning experiments for atAD diagnosis

Table IV reports 5-fold cross-validation atAD vs. non-AD
classification results using patient demographics, cognitive
test scores, and hippocampal volume as features. The highest
recall is achieved for the VHS data set (0.82), followed by
ADNI (0.77), and NACC (0.59). Our results show substantial
improvement over the baseline recall of 0.34 for ADNI. We
also see some improvement of the baseline recall of 0.52 for
NACC. Fig. 2A-C plots the receiver operating characteristic
(ROC) curves and reports the area under the curve (AUC) for
each of the five folds of the (A) VHS, (B) NACC, and (C)
ADNI data sets.

Table III reports the feature ablation study results to com-
pare the contributions of clinical features, hippocampal vol-
ume, and MRI features. For both NACC and ADNI, the best
performing feature set across all metrics is the combination
of MRI and clinical features, achieving a recall of 0.69 for
NACC and 0.77 for ADNI. The poorest performing feature
set is hippocampal volume only. For both data sets, the results
show that even clinical features alone are discriminative for
distinguishing atAD from non-AD. These clinical features may
then be further complimented by MRI. Fig. 2D and E shows
ROC curves and AUCs for the five folds of the (D) NACC
and (E) ADNI data sets.

C. Visualization of significant brain regions

Our Boruta analysis yields a selection of brain regions that
are significant for distinguishing tAD, atAD, and non-AD from
CN and characterizes these groups based on their patterns of
brain atrophy or enhancement. Fig. 3 visualizes the significant
brain regions identified for each group within NACC and
ADNI data sets.

For NACC, Fig. 3A shows that the tAD group shows
significant atrophy in the hippocampal, entorhinal, fusiform,

Fig. 2. ROC curves for 5-fold cross validation atAD vs. non-AD classification:
(first row) clinical scores + hippocampal volume for (A) VHS data set, (B)
NACC data set, and (C) ADNI data set; (second row) clinical scores + MRI
features for (D) NACC data set and (E) ADNI data set.

inferior parietal, inferior temporal, isthmus cingulate, lateral
orbitofrontal, middle temporal, superior parietal, and supra-
marginal regions. The tAD group also shows increased caudal
anterior cingulate volume and surface area, paracentral vol-
ume and surface area, posterior cingulate volume, and rostral
middle frontal cortical thickness compared to CN. In Fig. 3B,
the atAD group displays significant atrophy in the fusiform,
inferior parietal, isthmus cingulate, lateral orbitofrontal, para-
central, pars opercularis, postcentral, precentral, precuneus,
rostral middle frontal, superior frontal, superior parietal,
superior temporal, and supramarginal regions. The nonAD
group is characterized by significant atrophy in hippocampal,
entorhinal, fusiform, inferior parietal, lateral orbitofrontal,
parahippocampal, pars opercularis, precuneus, rostral anterior
cingulate, superior temporal, and insular regions, as well as
increased rostral middle frontal cortical thickness (Fig. 3C).

We perform Boruta analyses to investigate significant fea-
tures distinguishing between atAD and non-AD for improved
atAD diagnosis. Fig. 4 visualizes the identified regions for
atAD vs. non-AD within (A) NACC and (B) ADNI data sets.

For NACC, the atAD group displays significantly more
atrophy than the nonAD group in the caudal middle frontal,
fusiform, inferior parietal, paracentral, pars opercularis, per-
icalcarine, postcentral, precentral, precuneus, rostral middle
frontal, superior frontal, superior parietal, and supramarginal
regions (Fig. 4A). The nonAD group shows significantly lower



7

Fig. 3. Visualization of significant (Type I error rate α=0.05) brain regions for (A/D) tAD, (B/E) atAD, and (C/F) non-AD groups compared to CN subjects
within the NACC (A-C) and ADNI (D-F) data sets. Blue indicates regions of decreased volume, cortical thickness, or surface area compared to CN. Red
indicates increased volume, cortical thickness, or surface area compared to CN.

medial orbitofrontal surface area compared to the atAD group
(Fig. 4A).

For ADNI, the nonAD group displays significantly more
atrophy than the atAD group in hippocampal, caudal mid-
dle frontal, entorhinal, fusiform, inferior temporal, medical
orbitofrontal, middle temporal, parahippocampal, pars or-
bitalis, pars triangularis, postcentral, posterior cingulate, pre-
cuneus, rostral anterior cingulate, rostral middle frontal, supe-
rior frontal, superior parietal, and superior temporal regions
(Fig. 4B).

IV. DISCUSSION

As demonstrated by our results, the proposed ML-enhanced
approach substantially improves the diagnosis of atAD cases.
For the private VHS data set, we achieve a recall of 0.82
(Table IV, 82% of atAD patients correctly diagnosed) using
only features currently used in clinical practice (subject demo-
graphic features, cognitive test scores, and hippocampal vol-
ume). For the public NACC and ADNI data sets, the proposed
ML approach with clinical features and hippocampal volume

improves diagnostic recall from 0.52 to 0.59 for NACC and
from 0.34 to 0.77 for ADNI (Tables II and IV). Incorporating
additional MRI features, we further improve the diagnostic
recall to 0.69 for NACC while achieving high precision of
0.77 (Table III). For ADNI, incorporating additional MRI
features with clinical features improves precision to 0.89 while
maintaining a recall of 0.77 (Table III) compared to clinical
features and hippocampus alone. The findings suggest that
inclusion of MRI features from areas of the brain in addition to
the hippocampus may further improve diagnostic accuracy for
atAD cases (Table III). Extracting such MRI features requires
no additional procedures for the patient as sagittal full brain
MRI is already performed as standard of care.

As shown in Fig. 3, there is some variation in significant
brain regions between the two data sets. These differences
may be attributed to different stages of disease progression
or disease heterogeneity (e.g., variants of atAD, different
diagnoses making up the non-AD group), or the possible
presence of multi-etiology dementia. The hippocampus is
highlighted as a significant region for tAD (Fig. 3A and D)
but not atAD (Fig. 3B and E) for both data sets, which is



8

Fig. 4. Visualization of significant (Type I error rate α=0.05) brain regions distinguishing between atAD and non-AD groups in the (A) NACC and (B) ADNI
data sets. Blue indicates regions of decreased volume, cortical thickness, or surface area for atAD compared to non-AD. Red indicates increased volume,
cortical thickness, or surface area for atAD compared to non-AD.

consistent with hippocampus-sparing nature of atAD reported
in the literature. Visual observation suggests the presence of
increased cortical thickness for cognitively impaired groups
(tAD, atAD, and non-AD) compared to CN subjects (Fig. 3).
Recently, Williams et al. report that cortical volume and
thickness may increase in the beginning stages of disease,
possibly before the development of symptoms, followed by
a decrease in volume/thickness in later stages of disease [34].
Visualization of MRI features reveals that the characteris-
tic brain regions for non-AD group differ between NACC
(Fig. 3C) and ADNI (Fig. 3F). As shown in Fig. 4, varia-
tions in the atAD and non-AD groups yield data set-specific
patterns of significant regions distinguishing between atAD
and non-AD. Future studies incorporating larger samples of
non-AD patients with non-AD diagnostic information (e.g.,
frontotemporal dementia) may further investigate MRI features
that reliably identify atAD variants from other diagnoses
contributing to cognitive impairment. Furthermore, dementia
may be multi-etiology, e.g., both AD and Lewy bodies or
vascular, and various combinations of pathology may result in
various patterns of atrophy and compensatory strengthening
effects within the brain that may further complicate diagnosis.
Further comprehensive studies are needed to disentangle the
effects of disease heterogeneity and co-occurring neurological
conditions.
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