Evaluating Low-Resource Lane Following
Algorithms for Autonomous Vehicles

Befiat Froemming-Aldanondo, Tatiana Rastoskueva, Michael Evans,
Marcial Machado, Anna Vadella, Rickey Johnson, Luis Escamilla, Milan

Jostes, Devson Butani, Ryan Kaddis, Chan-Jin Chung,

Josh Siegel

Purpose

Reliable lane following is essential for automated vehicles, but they often

require extensive computational resources
o According to estimates released by Nvidia in 2017, a fleet of 100-125 vehicles can
generate 203—-595 PB of raw data per year, resulting in 104-487 TB after
preprocessing
o Training deep models on these data volumes can take upwards of 113-528 days on
a single NVIDIA DGX-1, necessitating 97-1,056 machines to achieve a 7-day target
o Smaller autonomous platforms (e.g., mobility aids, golf carts, and delivery robots)

can't afford those computational resources

Overview

e We designed five low-resource lane-following algorithms designed for real-time
operation on vehicles with limited computing resources using Python OpenCV
library and ROS.

e They were tested both on the simulations and real drive-by-wire vehicles on
Parking Lot H of Lawrence Technological University.

e The way our algorithms function is by detecting the lane center and then using

that information to remain within the lane.

Largest White Contour

e Detects the largest contour - which we assume

to be the largest contour

e Then we compute the offset to this contour,

which we consider the center of the lane

e Sensitive to noise and offset value

Birds-eye-view with Least Square Regression line

e Change the image perspective to bird’s eye view,

which results in lanes being parallel and straight

e Represent the lines as two least squares
regression lines and compute the middle point

between them

e More robust than a single-line approach, but

outliers may still affect the result

Linear Lane Search
with K-Means

e Uses unsupervised learning

e Detects 2 clusters on a line and
finds a midpoint between them

e |f one or both lane lines are
missing, the method reuses the
previous frame’s centroids

e Algorithm is computationally
efficient, but sensitive to noise

Lane Line classification using DBSCAN

e Uses unsupervised learning

e Separates dense groups of points from
outliers, making it a good fit for lane line

clustering
e DBSCAN separates lane lines more effectively

e Less sensitive to noise, but more sensitive to

parameter settings

DeepLSD Lane Detection

e Deep learning-based line detector, DeepLSD

e DeepLSD doesn't need to be retrained like
other open-source lane detectors

e DeepLSD can't detect curved lines

e Draw horizontal lines into the image to convert
curved lines into short straight segments

e Inference time is slow (~5 images processed
per second) on our laptops

Lane following

After detecting the lane, need to
execute motion commands for
our vehicle

Lane detection algorithm gives us
the location of the middle of the
lane on the image

Depending on this value we
compute how much we should
rotate the steering wheel

Gas pedal to the
desired speed

Drive
Enabled

](7‘@5—

{

Set turn angle to

arctan((abs(cx - midx) / (rows - cy))]

Convert turn angle
steering angle

to

Yes

<

|

Rotate steering wheel
left by steering angle

] Yes

|

Rotate steering wheel
right by steering angle

G
Publish

-

—

Use the brake pedal
to a complete stop

Rotate the steering wheel
to the original position

commands and

enable vehicle
 —

Experiment

The performance of the five lane detection
algorithms was evaluated on the Lot H course

The objective was to complete five consecutive
laps on both inner and outer lanes, driving on the
right side

In the inner lane, there is a sharp turn with a radius
of just 4 meters where the lane-following
algorithms fail more frequently

In cases where an algorithm failed to complete all
five laps, it was re-run at reduced speed, as
necessary

All five algorithms successfully completed five consecutive laps on both inner and outer
lanes

The only algorithm to successfully complete all 10 laps on the first attempt was DBSCAN

We also assess the metrics for reliability and comfort

ATTEMPTS NEEDED BY EACH ALGORITHM.

Type | DeepLSD | DBSCAN | K-Means | LSRL | Largest Contour
Inner 5 1 2 2 2
Outer 1 1 1] 3
Total 6 2 S 7 5

~25 Largest Contour

Results - Acceleration

Sharp turns, inclined slopes,
potholes, and the algorithms

themselves can cause variations ?jjo I T T T — ——
from the target speed.
Therefore we want smoother R TP SO PUW R BTV, T, P YRS YWY T R

graph s —— DBSCAN

0 5 10 15 20 2
30
o 25 —— DeepLSD
b
E 20
c
215
[
5
210
3
<05
00
0 5 10 15 20 25

Results - Inertial

IMU

Largest Contour

Measurement Unit S B e e S
(IMU)

IMU
o o
° N}

MU

. —— K-Means
Measures forces acting on the o me
vehicles o

Smoother peaks mean better ; : . .

. HVA it Vi Vi W

Negative peaks indicate that
algorithmic overcorrection and

—— DeepLSD

20 25 30

MU

MU

Time (s)

Conclusion

e Based on our results DBSCAN and K-Means algorithm are the most robust lane
following algorithms

e These algorithms achieved maximum speeds of 3.5 m/s in the outer lane and
2.5 m/s in the inner lane

e Processing times of 10 ms or less per frame, ensuring real-time performance

Questions

