
Evaluating Low-Resource Lane Following
Algorithms for Autonomous Vehicles
Beñat Froemming-Aldanondo, Tatiana Rastoskueva, Michael Evans, 

Marcial Machado, Anna Vadella, Rickey Johnson, Luis Escamilla, Milan 

Jostes, Devson Butani, Ryan Kaddis, Chan-Jin Chung, 

Josh Siegel



Purpose

● Reliable lane following is essential for automated vehicles, but they often 

require extensive computational resources
○ According to estimates released by Nvidia in 2017, a fleet of 100–125 vehicles can 

generate 203–595 PB of raw data per year, resulting in 104–487 TB after 

preprocessing

○ Training deep models on these data volumes can take upwards of 113–528 days on 

a single NVIDIA DGX-1, necessitating 97–1,056 machines to achieve a 7-day target

○ Smaller autonomous platforms (e.g., mobility aids, golf carts, and delivery robots) 

can't afford those computational resources



● We designed five low-resource lane-following algorithms designed for real-time 

operation on vehicles with limited computing resources using Python OpenCV 

library and ROS.

● They were tested both on the simulations and real drive-by-wire vehicles on 

Parking Lot H of Lawrence Technological University.

● The way our algorithms function is by detecting the lane center and then using 

that information to remain within the lane.

Overview



Largest White Contour

● Detects the largest contour - which we assume 

to be the largest contour

● Then we compute the offset to this contour, 

which we consider the center of the lane

● Sensitive to noise and offset value



Birds-eye-view with Least Square Regression line

● Change the image perspective to bird’s eye view, 

which results in lanes being parallel and straight

● Represent the lines as two least squares 

regression lines and compute the middle point 

between them

● More robust than a single-line approach, but 

outliers may still affect the result



Linear Lane Search 
with K-Means

● Uses unsupervised learning

● Detects 2 clusters on a line and 
finds a midpoint between them

● If one or both lane lines are 
missing, the method reuses the 
previous frame’s centroids

● Algorithm is computationally 
efficient, but sensitive to noise



Lane Line classification using DBSCAN

● Uses unsupervised learning

● Separates dense groups of points from 

outliers, making it a good fit for lane line 

clustering 

● DBSCAN separates lane lines more effectively 

● Less sensitive to noise, but more sensitive to 

parameter settings



DeepLSD Lane Detection

● Deep learning-based line detector, DeepLSD

● DeepLSD doesn’t need to be retrained like 
other open-source lane detectors

● DeepLSD can’t detect curved lines

● Draw horizontal lines into the image to convert 
curved lines into short straight segments

● Inference time is slow (~5 images processed 
per second) on our laptops



Lane following 

● After detecting the lane, need to 
execute motion commands for 
our vehicle

● Lane detection algorithm gives us 
the location of the middle of the 
lane on the image

● Depending on this value we 
compute how much we should 
rotate the steering wheel



Experiment

● The performance of the five lane detection 
algorithms was evaluated on the Lot H course

● The objective was to complete five consecutive 
laps on both inner and outer lanes, driving on the 
right side

● In the inner lane, there is a sharp turn with a radius 
of just 4 meters where the lane-following 
algorithms fail more frequently

● In cases where an algorithm failed to complete all 
five laps, it was re-run at reduced speed, as 
necessary



Results

● All five algorithms successfully completed five consecutive laps on both inner and outer 
lanes

● The only algorithm to successfully complete all 10 laps on the first attempt was DBSCAN

● We also assess the metrics for reliability and comfort



Results - Acceleration

● Sharp turns, inclined slopes, 
potholes, and the algorithms 
themselves can cause variations 
from the target speed.

● Therefore we want smoother 
graph



Results - Inertial 
Measurement Unit 
(IMU)

● Measures forces acting on the 
vehicles

● Smoother peaks mean better 
comfort. 

● Negative peaks indicate that 
algorithmic overcorrection and 
recovery



Conclusion

● Based on our results DBSCAN and K-Means algorithm are the most robust lane 

following algorithms

● These algorithms achieved maximum speeds of 3.5 m/s in the outer lane and 

2.5 m/s in the inner lane

● Processing times of 10 ms or less per frame, ensuring real-time performance



Questions


