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Purpose

Reliable lane following is essential for automated vehicles, but they often

require extensive computational resources
o According to estimates released by Nvidia in 2017, a fleet of 100-125 vehicles can
generate 203—-595 PB of raw data per year, resulting in 104-487 TB after
preprocessing
o Training deep models on these data volumes can take upwards of 113-528 days on
a single NVIDIA DGX-1, necessitating 97-1,056 machines to achieve a 7-day target
o Smaller autonomous platforms (e.g., mobility aids, golf carts, and delivery robots)

can't afford those computational resources



Overview

e We designed five low-resource lane-following algorithms designed for real-time
operation on vehicles with limited computing resources using Python OpenCV
library and ROS.

e They were tested both on the simulations and real drive-by-wire vehicles on
Parking Lot H of Lawrence Technological University.

e The way our algorithms function is by detecting the lane center and then using

that information to remain within the lane.



Largest White Contour

e Detects the largest contour - which we assume

to be the largest contour

e Then we compute the offset to this contour,

which we consider the center of the lane

e Sensitive to noise and offset value




Birds-eye-view with Least Square Regression line

e Change the image perspective to bird’s eye view,

which results in lanes being parallel and straight

e Represent the lines as two least squares
regression lines and compute the middle point

between them

e More robust than a single-line approach, but

outliers may still affect the result



Linear Lane Search
with K-Means

e Uses unsupervised learning

e Detects 2 clusters on a line and
finds a midpoint between them

e |f one or both lane lines are
missing, the method reuses the
previous frame’s centroids

e Algorithm is computationally
efficient, but sensitive to noise




Lane Line classification using DBSCAN

e Uses unsupervised learning

e Separates dense groups of points from
outliers, making it a good fit for lane line

clustering
e DBSCAN separates lane lines more effectively

e Less sensitive to noise, but more sensitive to

parameter settings




DeepLSD Lane Detection

e Deep learning-based line detector, DeepLSD

e DeepLSD doesn't need to be retrained like
other open-source lane detectors

e DeepLSD can't detect curved lines

e Draw horizontal lines into the image to convert
curved lines into short straight segments

e Inference time is slow (~5 images processed
per second) on our laptops




Lane following

After detecting the lane, need to
execute motion commands for
our vehicle

Lane detection algorithm gives us
the location of the middle of the
lane on the image

Depending on this value we
compute how much we should
rotate the steering wheel
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Experiment

The performance of the five lane detection
algorithms was evaluated on the Lot H course

The objective was to complete five consecutive
laps on both inner and outer lanes, driving on the
right side

In the inner lane, there is a sharp turn with a radius
of just 4 meters where the lane-following
algorithms fail more frequently

In cases where an algorithm failed to complete all
five laps, it was re-run at reduced speed, as
necessary




All five algorithms successfully completed five consecutive laps on both inner and outer
lanes

The only algorithm to successfully complete all 10 laps on the first attempt was DBSCAN

We also assess the metrics for reliability and comfort

ATTEMPTS NEEDED BY EACH ALGORITHM.

Type | DeepLSD | DBSCAN | K-Means | LSRL | Largest Contour
Inner 5 1 2 2 2
Outer 1 1 1 ] 3
Total 6 2 S 7 5
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Results - Inertial
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Conclusion

e Based on our results DBSCAN and K-Means algorithm are the most robust lane
following algorithms

e These algorithms achieved maximum speeds of 3.5 m/s in the outer lane and
2.5 m/s in the inner lane

e Processing times of 10 ms or less per frame, ensuring real-time performance



Questions



