
Current Progress of V2X Research
Luis Escamilla, Michael Evans, Beñat Froemming-Aldanondo,
Rickey Johnson, Marcial Machado, Tatiana Rastoskueva, and Anna Vadella

Lawrence Tech and Michigan State University

An Overview

Questions and Motivations:

- Efficient traffic management
- Viable and scalable V2X model

How We’ve Been Answering Them:

- Creating reliable lane-following algorithm(s)
- Developing viable intersection detection
- Prototyping light-RSU-vehicle connection
- Establishing a modular node architecture
- Simulating V2X capabilities with gazelle

2

Lane Detection and Following

Tested Approaches on the ACTors:

1) Largest White Contour With an Offset.

2) Density Based Clustering (Unsupervised Learning)

3

Lane Following Demo

4

Notable Characteristics:

- Successfully lanekeeps in extreme
environments (shown: shadow, glare)

- Centered properly within the lane
- Speed retention on turns
- Minimal jerk on straight drives

Lane Following

Achievements:

- 3 laps in both inner and outer lanes using each algorithm
- Improved the advanced clustering approach by introducing DBW

Native Commands: Actuator Messages and Unified Controller
Messages

- IGVC regulatory speed of 5 mph
- Detect the yellow intersection line, stop for a bit, cross the

intersection, and ignore the next yellow line

Future Work:

- Birds-eye-view implementation
- Test other approaches: Blob, Hough Lines, and Deep Learning Lane

Detection
- Create a table to compare all approaches for the paper
- Choose the best for V2X final demo

5

Lane Following: Birds-Eye-View

Idea:

- Theoretically, easier curve detection

How it works:

- First using cv2 function to change the image perspective
- Image processing - cropping the image ,threshold, canny
- Gets points of the left and right and computes a least squares

function through them
- Computes middle point between left and right lines

Future Improvements

- Tune algorithm to deal with faster speeds and sharp curves
- Connect algorithm to a Deep Learning lane detection 6

Computing Speed and Detecting Intersections

7

detect intersection
Create yellow mask
Compute yellow pixel percentage

lane detection
compute ideal center using CV

if drive:

 # linear speed
 if yellow percentage > threshold:

Set target speed to 0 for a set time
Start moving again and ignore yellow detection
for a set time

 else:
set target speed to speed limit

 # angular speed
 if mid is left of center by a threshold:
 turn steering wheel left
 elif mid is right of center by a threshold:

turn steering wheel right
 else:

go straight

else:
 set target speed to 0

Establishing an RSU Strategy: Initial Connection

Our Introduction:

- Understanding sample GPT HTTP Arduino code

The Process:

- Look into alternatives: MQTT, ROSSerial
- Practice with alternative timing algorithms

Where We Are:

- Successfully connected RSU and Arduino over
RSU-hosted ROSSerial connection

- Prototyped communication over model “chatter”
topic

8

Establishing an RSU Strategy: Message Types

Traffic light implementation

- The traffic light ‘brain’ implemented on arduino
- After each switch publishes a messages to topics:

- Direction, State, time until next change

Custom message type on arduino | Error

Idea: publish a custom ros topic with state and time from arduino to RSU

- Made a custom ros topic on ros
- Problem: too much work with installing both ros on windows and

arduino on linux
- Tried WSL, but linux and windows have different file systems

-> wouldn’t be able to connect ros message to arduino
- Decided to come up with another system

9

Going Forward: RSU “Host” → Light “Client”

- RSU will run the state and timer of traffic light internally
- RSU only publishes state changes to traffic light node
- Each side of the light will subscribe to topics in that side’s

ROS namespace

RSU

Traffic Light State

10

Traffic Light State

Arduino

Software Architecture

Lane Following

V2X Sim

11

Conceptualization of Future Architecture

raw_img line_detection_
preparation

turn_state
(twist)

processed_image
(ROS image) find_midpoint

vehicle_controller

counter

RSU

state

traffic_light_m
odelimage

traffic light

twist

ULC

OR

gazelle

ACTor DBW

waypoints.yaml

ROSBoard

Accesses
various topics

yellow_detection
at_yellow
(boolean)

GPS
12

Current Progress on V2X Simulation

- Currently using contour based lane following algorithm
- Developed an adaptive speed algorithm to reduce waiting time

at intersections
- Tested algorithm on two different maps with varying number of

vehicles
- Created rosboard to visually show stop lights and their times

13

Capturing Waypoints in Simulation

We use waypoints to solve the “birds eye view” distance calculation problem

Steps:

1. Trace expected path of car on simulator map

2. Ping position of map on simulator through terminal

3. Increment every few centimeters

4. Save positions to .yaml file, separating intersection coordinates

5. Repeat process for each designated path for car to follow

Improvements:

● Reduce number of waypoints to “checkpoint” type structure on corners only

● Compute a known “distance to intersection” at each node

14

Using Waypoints in Simulation

Finding distance using waypoints:

 Find the closest waypoint to the car’s position:

 for every waypoint:

 calculate the distance from car to waypoint

 if distance < lowest distance so far:

 lowest distance = distance

 record the index of lowest distance waypoint

 Sum the total distance from current waypoint to next intersection:

 total distance = 0

 for every waypoint from waypoints[current] to waypoints[intersection]:

 total distance += distance between waypoint i and waypoint i + 1
15

Adaptive Speed Algorithm

16

when stop lights change state:

calculate distance to closest intersection

time to intersection = distance / current speed

works good on simulation

if light state is red:

if time to intersection < time to change state:

set speed to distance / time to change state (arrive too soon, SLOW DOWN)

else:

keep speed

logic to improve (weird behaviour sometimes)

if light state is green:

if time to change state < time to intersection > and time to next change state:

set speed to distance / time to change next state (arrive too late, SLOW DOWN)

else:

keep speed

Rosboard

- Initially planned to use Flask
- Then we switched to Rosboard

introduced by Devson
- Display stoplight status on the

intersection and time left for the
state to change

17

Lot H Course Sim
Accomplishments:
● Changing light states
● Light states recognized by cars
● Adaptive speed algorithm

Flaws:
● Lane Following
● Light states at runtime
● Not slowing down enough for red

lights
● Stopping before crosswalk

18

Figure 8 Sim
Accomplishments:
● Changing light states
● Light states recognized by cars
● Adaptive speed algorithm
● Working with 4 vehicles

Flaws:
● Lane Following
● Light states at runtime
● Not slowing down enough for red

lights
● Stopping before crosswalk

19

Future Goals for V2X Simulation

- Create a dependable lane following algorithm
that works in both simulation and real-life

- Implement a yellow light functionality to avoid
really slow speeds

- Adjust adaptive speed algorithm to never stop
at red lights

- Begin adapting simulation to real life

20

Summary and Plans Moving Forward

Summary:

- A robust lane following algorithm developed; viable alternatives on the way
- Proof-of-concept RSU connection established
- Adaptive speed algorithm working within simulation for:

- Both circle “Lot H” course and figure 8 “intersection” course
- Red and green lights
- Up to four cars

Future Plans:

- Modularize codebase to make issues more discrete (single-node architecture likely not maintainable)
- Begin testing all project components (RSU, lane following, adaptive speed algorithm) together outside of

the simulation
- Begin working on writing lane following and V2X papers

21

