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Abstract— Reliable lane-following algorithms are essential
for safe and effective autonomous driving. This project was
primarily focused on developing and evaluating different lane-
following programs to find the most reliable algorithm for a
Vehicle to Everything (V2X) project. The algorithms were first
tested on a simulator and then with real vehicles equipped
with a drive-by-wire system using ROS (Robot Operating
System). Their performance was assessed through reliability,
comfort, speed, and adaptability metrics. The results show that
the two most reliable approaches detect both lane lines and
use unsupervised learning to separate them. These approaches
proved to be robust in various driving scenarios, making them
suitable candidates for integration into the V2X project.

I. INTRODUCTION

In this paper, five-lane detection approaches are presented
that were proven to work on real drive-by-wire vehicles. This
project aimed to identify the most reliable one for use in a
Vehicle-to-Everything (V2X) project [1], which focused on
developing a low-cost Roadside Unit (RSU) for Adaptive
Intersection Control of Autonomous Electric Vehicles. V2X
is a communication technology that enables vehicles to
interact with each other (V2V), with infrastructure (V2I),
with pedestrians (V2N), and with other road users. It aims
to improve road safety and traffic efficiency by providing
real-time information that facilitates proactive responses to
different driving scenarios [2].

To have a successful V2X communication system, au-
tonomous vehicles must have some basic and essential
components such as effective lane-following, which requires
precise detection and tracking of lane markings to maintain
a proper positioning on the road. The 5 algorithms presented
in this paper are the following: Largest White Contour, Lane
Line Approximation using Least Square Regression, Linear
Lane Search with K-Means, Lane Line Discrimination using
DBSCAN, and DeepLSD Lane Detection. Their performance
was compared based on reliability, comfort, speed, and
adaptability. Reliability was measured by the consistency
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of successful laps, comfort by the smoothness of the ve-
hicle’s movements, speed by lap time, and adaptability by
the algorithms’ performance under varying conditions. This
paper also details lane following, the architecture used, real-
life implementation challenges, and presents an experimental
analysis to identify the best algorithm for the V2X project.

The remainder of this paper is organized as follows:
Section II reviews related work; Section III outlines the
methodology and resources; Section IV describes the soft-
ware architecture with four nodes; Section V covers prepro-
cessing; Section VI details five lane detection algorithms;
Section VII discusses vehicle control algorithms; Section
VIII presents experimental results; and Section IX concludes
with future research directions. The project code is avail-
able at https://github.com/benatfroemming/REU-2024-Lane-
Following.

II. RELATED WORK

Due to the complexities and cost of using real-scale
autonomous vehicles, most research on lane-following has
not been tested outside of a virtual environment. Much of
this research does not effectively simulate lane following, and
instead only focuses on lane detection using a single image or
video. Hence, there is no reliable way to prove the efficiency
and safety of those algorithms. The performance of an
algorithm can be completely different in a real environment
where there are a lot more factors to consider, such as the
kinematics of the vehicle.

In the previous editions of the Self-Drive Research Ex-
perience for Undergraduates (REU) funded by the National
Science Foundation (NSF) at Lawrence Technological Uni-
versity (LTU), several algorithms were developed and tested
on real electric vehicles [3]. Traditional computer vision
techniques were used for lane detection using OpenCV. This
paper builds on those initial approaches, showing continued
progress by introducing machine learning techniques.

III. MATERIAL AND METHODS
A. Simulation and Real Environment

The lane-following algorithms were tested on two different
simulators: Simple-Sim [4] and Gazelle-Sim. Simple-Sim is
a 2D simulator that allows for the control of a single robot
in custom environments using ROS. Gazelle-Sim is an ex-
panded version of the original, allowing for the simultaneous
operation of multiple robots.



After testing the algorithms within the simulator, they were
then modified to work on real-life drive-by-wire vehicles.
The real-world test course is in parking lot H, located at
Lawrence Technological University in Southfield, Michigan,
USA. This circular test course simulates real-world adverse
conditions such as potholes, sharp curves, faded and narrow
lane markings, cracks, and extraneous lines. It also introduces
unpredictable external challenges like tree shadows, sun
glare, and puddles. An aerial view of the course is shown in
Fig. 1.

Fig. 1: Aerial View of the Lot H Course in LTU.

B. Vehicle Specifications

The vehicles used for testing were ACTors (Autonomous
Campus Transport) 1 and 2. Refer to Fig. 2. These vehicles
were built on the Polaris Gem e2 platform, provided by
MOBIS, and then modified by the Lawrence Technological
University Intelligent Ground Vehicle Competition (IGVC)
team. Each ACTor is equipped with essential self-driving
hardware, including a Dataspeed Drive-by-Wire kit, an HDR
camera for lane-following, 2D and 3D LiDAR sensors, and
two Swift Piksi GPS modules. Additionally, both vehicles
feature a Netgear router, power inverter, and a removable
computer for networking and programming the Drive-by-
Wire system using ROS (Robot Operating System). The
Polaris Gem e2 boasts a top speed of 25 miles per hour
and a range of approximately 30 miles.

Fig. 2: ACTors 1 and 2.

IV. ARCHITECTURE AND DYNAMIC RECONFIGURE

All the lane-following algorithms share the same architec-
ture to maintain simplicity and modularity. It was designed
to facilitate easy switching and tuning of the algorithms
and environments within the vehicle or simulator. This is
accomplished by using arguments within the launch file and
dynamic reconfigure. The dynamic reconfigure GUI allows
the user to activate the vehicle, adjust the vehicle’s speed,
tune the algorithms’ parameters, and modify the steering
sensitivity. The ROS-based architecture consists of 4 nodes:
Preprocessor, Lane Detector, Vehicle Controller, and Vehicle
Node.

V. PREPROCESSING

The Preprocessor node is in charge of enhancing the raw
frontal image of the vehicle to extract insightful data about
the road markers. It does this by applying a series of different
effects using the OpenCV library. The first of these effects
is Median Blur, which is applied to remove noise while
preserving edges. This creates a blur effect in the image
and highlights white regions. The image is then converted
from the RGB color space, which has three channels, to
a single-dimensional color space of gray shades. The new
image retains the white pixels and makes it easier to find the
correct threshold for identifying them. After that, the white
regions are masked out. Finally, by cropping and removing
the top part of the image, the region of interest (ROI) is
obtained. The ROI only looks at the road and avoids other
extraneous noises like buildings, trees, and the sky.

These steps are common to all algorithms, although some
may require more sophisticated processing as explained in
the next section. They can be disabled or tuned using
Dynamic Reconfigure. For example, the upper and lower
white threshold values when creating the mask. Finally, the
lane-detection node receives the modified image and follows
a specific set of steps tailored to each algorithm.

VI. LANE DETECTION ALGORITHMS

1) Largest White Contour: The first approach used for
lane detection involves a basic line-following algorithm with
an offset and is used to teach and test the basic concepts
behind using the ACTor Vehicles [5]. Hence, it is a good
starting point to add improvements. The basic algorithm
looks for the largest contiguous collection of white pixels,
or “contour”, in the preprocessed image. OpenCV is used to
obtain a list of all white contours by calling the find contours
function. Then, by iterating through them and computing
their areas, the largest one can be identified. Next, the spatial
moments are computed to find the largest contour’s centroid.
Finally, a static offset is added to the centroid in the x-axis
to approximate the center of the lane as seen in Fig. 3 (on
the left of the line if driving in the right lane).

While this approach is reliable in ideal conditions, it
encounters challenges on the real course. Cracks and poor
lane markers can disrupt the largest contour, leading to incor-
rect marker identification. To address this, in the improved
version, dilation is applied to enlarge white object areas,



making them more pronounced. Applying Gaussian Blur also
helps connect broken lines. Additionally, on the enhanced
version, only contours on the right side of the image are
considered to avoid detecting the left line. The downside
of this approach is that it assumes a continuous white line
exists on the right side of the lane, which may not always be
the case in real-world scenarios. Moreover, the paper later
demonstrates that following a single line from a lane is less
reliable compared to tracking both lines.

Fig. 3: Largest Contour and Offset Point.

2) Lane Line Approximation using Least Square Regres-
sion (LSRL): The second lane detection approach identifies
both lane lines and computes approximate least squares
regression lines for each. To improve line detection, partic-
ularly for curves, it takes advantage of a bird’s-eye view
perspective [6]. This transformation makes the image appear
as if it were taken from above, causing the lines to appear
parallel rather than converging due to depth. Refer to Fig.
4. Additionally, curves look straighter but slightly inclined,
allowing the use of a first-degree polynomial to represent the
lines.

After applying this perspective transform, the preprocess-
ing requires additional steps that were not used in the first
approach. Canny filtering is used on the white mask image to
remove noise and only keep edges. The edges are found from
gradient changes in pixels, non-maximum suppression, and
thresholding [7]. The next step involves the Hough Lines
Transform, a feature extraction technique used to detect
straight lines [8]. All the straight edges of the Canny edges
are extracted and stored as a list of start and end points.
The points are then filtered by the minimum length and the
slope of the corresponding lines. In most cases, it is safe to
remove lines that are nearly horizontal as they are likely not
part of the lane lines. If not enough points are obtained this
way, another option is to draw the filtered lines in white on
a black canvas, extract white pixels, and downsample them
uniformly. The image is then divided into two sections: left
and right. Points on the left part are classified as part of the
left lane line, while points on the right side are classified
as part of the right lane line. For each side, regression lines
are computed, which are subsequently used to determine the
lane’s midpoint. The least squares regression line is given
by y = mx + b where the slope m and y-intercept b are
calculated as seen in (1).
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To enhance reliability, additional methods are used. One
method reduces noise by live cropping on curves, which
minimizes white points along the lane edges for better
detection. Another method uses an adaptive variable to divide
the image, distinguishing between left and right lines during
turns. It’s useful when the lines are not strictly positioned to
the left and right of the horizontal midpoint. Furthermore, if
a line is not detected, the algorithm assumes the line is at
the image’s edge.

This algorithm can detect both lane lines simultaneously,
providing a more accurate lane representation than single-
line algorithms. It performs well on curves, even if one line
isn’t detected. However, the least squares regression can be
sensitive to outliers, and despite noise reduction, residual
points might still cause deviations from the lane.

m
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Fig. 4: Visualization of LSRL Lane Detection Algorithm.

3) Linear Lane Search with K-Means: The third approach
focuses on finding lines using a single horizontal line of the
image. In particular, it focuses on the central horizontal row
only, finding all of the white pixels. In the most ideal case,
two groups of white pixels are detected, one for each lane
line. Instead of finding the mean of the detected points, it
is a better approximation to apply K-Means with K = 2 to
find the centroid of each group, and then find an average. K-
means clustering initializes K cluster centers (centroids) and
iteratively assigns each data point to the nearest centroid [9].
The centroids are updated to the mean of the assigned points,
and this process repeats until the centroids converge and
no longer change significantly. This method is implemented
using the Scikit-Learn Python library.

The approach works well when both lane lines are con-
tinuous. However, it struggles when the middle line is
discontinuous, potentially detecting only one or no lines.
This issue can be identified by the proximity and size of
the K-Means centroids, which should be close together or
have a small number of cluster points. To address this, the
two most recent centroids are stored as an approximation of
lane positions. Refer to Fig. 5.

The algorithm is computationally fast, enabling quick pro-
cessing speeds and rapid reactions. It also provides stability,
as defects in individual images do not cause immediate
incorrect responses. However, the main issue is extraneous



white noise in the searched row, which can affect K-Means
clustering results. This can be mitigated by using noise
reduction techniques like histograms and thresholds.

Fig. 5: Visualization of Linear Lane Search with K-Means.

4) Lane Line Discrimination using DBSCAN: The fourth
approach developed for lane detection uses an algorithm
called DBSCAN to identify and distinguish both lane lines.
Similar to the LSRL algorithm, it obtains a list of points
through Canny edge detection and Hough Lines Transform.

In the next step, an unsupervised learning method is
employed to filter out noise and differentiate between the
lane lines. Specifically, DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) is used, an algorithm
also available in the Scikit-Learn Python library. DBSCAN
clusters points that are densely packed together while identi-
fying points in low-density regions as outliers. The algorithm
selects a point and searches for other points within a specified
radius, epsilon. If the number of points within this area
exceeds a certain threshold (minPts), the point is classified
as a “core point,” and a new cluster is formed. Refer to
Fig. 6. This process is then repeated to expand the clusters
[10]. Density-based algorithms are effective for lane line
detection because they can handle well-separated lines as
seen in Fig. 7. They can also connect discontinuous segments
of the center line, provided the epsilon value is appropriately
set to avoid exceeding the minimum distance between lane
lines.

Core Point Border Point

Cluster 1
Cluster 2

MinPts =3

Fig. 6: DBSCAN Algorithm.

Once all of the clusters are computed, the focus is shifted
to the two clusters directly in front of the vehicle. The
algorithm sorts the clusters according to their y-axis values,
where the y-axis increases from top to bottom in the image. It
then identifies the two largest clusters nearest to the bottom
of the image and checks if they are substantial enough to
be lane lines by ensuring they contain a sufficient number
of points. Subsequently, the centroids of these two clusters
are computed and averaged to determine the lane’s center.

Averaging all the unclustered points was avoided because a
line with more points could disproportionately influence the
centroid. Therefore, clustering is essential for accurate lane
detection.

The effectiveness of clustering in this approach depends
on choosing the right epsilon value. In a raw frontal image,
increasing distance can make lane lines appear closer, poten-
tially merging them into one cluster if epsilon is too large.
Transforming the image to a bird’s-eye view, as used in the
LSRL algorithm, and adjusting epsilon by extending shorter
Hough lines can help, while overextension risks overlap on
curves. Cropping the image’s top can also reduce depth
issues. DBSCAN separates lane lines more effectively than
simple vertical splits or slope-based methods, which struggle
with curved lanes.

Fig. 7: DBSCAN Clustering Lane Lines.

5) DeepLSD Lane Detection: The final approach devel-
oped is based on supervised learning. The rise of deep
learning has significantly impacted the vehicle industry,
enabling the automation of various tasks [11]. Instead of
building a deep learning model from scratch, which is a
difficult task without the proper resources, we utilized a pre-
trained model called DeepLSD. By combining deep learning
with the precision of handcrafted detectors, it excels at
extracting line segments from real-world images [12]. Using
such models can streamline the lane line detection process
compared to traditional computer vision algorithms.

DeepLSD performed well under ideal conditions but strug-
gled with identifying lines on the test course. The model de-
tected noise, such as cracks and potholes, and had difficulty
with curved lines. Applying masking and blurring techniques
from previous algorithms improved white-line identification.
To address curve detection, horizontal lines were drawn into
the image, converting the curved lines into short straight
segments for better analysis. An example is shown in Fig. 8.

Once the lane lines are detected, they are filtered by
length and slope, and one of the previous approaches can
be used to separate the lanes, such as DBSCAN. When
testing this system on the vehicles’ laptops, inference took
approximately 0.15 seconds on average. The device used for
testing was an MSI Gaming Laptop with an Intel 8-Core
17-11800H processor, 16GB of RAM, a 512GB SSD, and a
GeForce RTX 3050 Ti 4GB graphics card. Since the camera
within the vehicle publishes images quicker than the model
can process, some images are ignored, and the processing
happens less frequently. Additionally, the inference is run in
parallel to allow the publishing of motion commands to the
vehicle at a consistent 50 Hz, which is necessary for the
DBW system’s heartbeat. If the vehicle does not receive this



heartbeat signal, the system shuts down because it assumes
unsafe driving conditions. The coordinates of the centroid
between the lane lines, determined through inference, are
stored globally and updated once the model finishes pro-
cessing. Meanwhile, these coordinates are published to the
vehicle during each callback.

Fig. 8: Curve Detection Using DeepLSD.

VII. LANE FOLLOWING ALGORITHMS

After detecting the lane lines, the next step is to center
the vehicle within the lanes and translate this information
into motion. This is done in the vehicle controller node. In
this section, two different methods are presented for lane
following. The first approach uses ROS Twist messages,
which control the vehicle’s motion with linear speed along
the x-axis (measured in meters per second) and angular
velocity, or yaw rate, along the z-axis (measured in radians
per second). These values are published to the vehicle’s
vel_cmd topic. As an input, the algorithm only needs the
offset between the center of the image (denoted as midx),
and the center of the lane (denoted as cx) computed by the
lane detection algorithms.

of relying on yaw rate, this method controls the vehicle’s
steering and pedals directly, providing a more intuitive
control experience. The Dataspeed drive-by-wire system in
the ACTor vehicles uses custom ROS messages for this
purpose. Actuator Messages (SteeringCmd) handle steering,
while Unified Control Messages (UlcCmd) manage the brake
and gas pedals.

A key improvement with this method is incorporating
the y-offset (denoted as cy) of the computed lane center.
Along with cx, midx, and the image height, a turning angle
relative to the y-axis is calculated. This turning angle is
then converted into a steering angle and transmitted via the
SteeringCmd message. Before any movement is initiated,
an enable message is sent to activate the vehicle’s motion.
These updates contribute to smoother driving and better lane
centering.

Drive
Enabled

Yes No
Set linear x speed Set linear x speed to 0
to target speed

Set angular z speed to Yes
-constant * abs((cx - midx) / midx) j
l No
A
Set angular z speed to 0

Publish Twist
Message

Set angular z speed to
constant * abs((cx - midx) / midx)

Gas pedal to the
desired speed

Use the brake pedal

arctan((abs(cx - midx) / (rows - cy)) to a complete stop

Set turn angle to ’

Yes
Rotate steering wheel
left by steering angle
No

Rotate steering wheel

Rotate the steering wheel
to the original position

right by steering angle

Publish
and
enable vehicle

Fig. 9: Lane Centering Using Yaw Rate.

While this approach works well at slower speeds, it
fails when going faster due to the difficulty of establishing
a proportional relationship between angular speed, linear
speed, and cx. Yaw rate control, due to its role in rotational
dynamics, is less intuitive and leads to difficulties in keeping
the vehicle centered, resulting in an uncomfortable experi-
ence for the passenger.

To address these issues, an alternative control method is
introduced for the Ackermann steering vehicle [13]. Instead

Fig. 10: Lane Centering with DBW Native Commands.

VIII. EXPERIMENT AND RESULTS

The performance of the five algorithms was evaluated
on the Lot H course. The objective was to complete five
consecutive laps on both the inner and outer lanes, driving
on the right side. DBW Native Commands were used for lane
following. In the outer lane, which is 97.54 meters long, we
set a fixed speed of 2m/s, while in the inner lane of 78.67
meters, the speed was set to 1.5m/s. Across all algorithms,
these target speeds were identified as being the most reliable
and comfortable options during the testing phases. If an
algorithm failed to successfully complete all five laps, it was
repeated with a reduced speed if necessary. The experiment
was conducted over several days, with weather conditions
ranging from sunny to cloudy. This variability demonstrated
each algorithm’s adaptability to different environmental con-
ditions.




All five algorithms were able to complete the set goal.
The average speed and time showed minimal variation since
the set speed was consistent for the algorithms. Therefore,
the number of attempts is a more indicative measure of
reliability. The only algorithm that successfully completed
all 10 laps on the first attempt was the DBSCAN-based
approach. In the inner lane, there is a sharp turn with a
radius of just 4 meters where the lane-following algorithms
fail more frequently.

Type | DeepLSD | DBSCAN | K-Means | LSRL | Largest Contour
Inner 5 1 2 2 2
Outer 1 1 1 5 3
Total 6 2 3 7 5

TABLE I: Attempts Needed by Each Algorithm.

As speed increased, issues with jerkiness and acceleration
occurred during turns. To address this, we measured linear
and angular momentum using GPS and an Inertial Measure-
ment Unit (IMU). The IMU, equipped with accelerometers
and gyroscopes, provides crucial data on the vehicle’s accel-
eration and rotational rate, essential for navigation and stabil-
ity control. We focused on the angular-z component, indicat-
ing angular momentum. During test runs, GPS coordinates
(latitude and longitude) were recorded using Rosbags, with
30-second segments—approximately one lap—extracted for
analysis. Linear momentum was calculated by determining
the distance between consecutive GPS points using the
Haversine formula [14]. Velocities were then computed by
dividing these distances by the time differences between
timestamps, as shown in Equation (2), and accelerations, as
seen in Fig. 11, were obtained by differentiating velocity
with respect to time, as seen in Equation (3).

n= @ 4= )
ti — ti—l ti+1 — ti

The results seen in Fig. 11 show that the K-Means and
DBSCAN-based lane detection algorithms are the best at
keeping a steady speed. Sharp turns, inclined slopes, pot-
holes, and the algorithms themselves can cause variations
from the target speed. The other three algorithms show more
instability with larger spikes in their momentum.

In Fig. 12, the angular momentum plots show the com-
pletion of a lap with four turns. This can be seen from the
four peaks. Smoother peaks indicate better comfort, as seen
in the DBSCAN plot. Low peaks under zero indicate that the
algorithm overcorrected and had to recover back, as seen in
the DeepL.SD plot, likely due to computational latency. In the
LSRL plot, the IMU readings show sharp spikes at various
points along each curve, followed by extended periods of
remaining at zero. This may be due to the algorithm’s
inability to anticipate turns effectively, caused by its reliance
on a bird’s eye view. This view might not capture the road’s
curvature accurately, leading the vehicle to go straight more
often and make sharper, more abrupt corrections, even on
slight curves.
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Fig. 11: Linear Momentum Measure Plot.
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Fig. 12: Angular Momentum Measure Plot.

IX. CONCLUSION AND FUTURE WORK

In conclusion, based on reliability, comfort, speed, and
adaptability metrics, Linear Lane Search with K-Means and
Lane Line Discrimination using DBSCAN performed the
best out of the five tested algorithms. They both share
the common approach of using unsupervised learning to
distinguish between the two lane lines, enabling the vehicle
to be centered between them. These two algorithms were
subsequently integrated with adaptive speed control algo-
rithms from the aforementioned V2X project to create a
demonstration and gather additional data. They were able
to achieve maximum speeds of 3.5m/s in the outer lane and
2.5m/s in the inner lane. In the future, we aim to conduct
further research into deep learning-based approaches.
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